Locally Linear Factorization Machines

نویسندگان

  • Chenghao Liu
  • Teng Zhang
  • Peilin Zhao
  • Jun Zhou
  • Jianling Sun
چکیده

Factorization Machines (FMs) are a widely used method for efficiently using high-order feature interactions in classification and regression tasks. Unfortunately, despite increasing interests in FMs, existing work only considers high order information of the input features which limits their capacities in non-linear problems and fails to capture the underlying structures of more complex data. In this work, we present a novel Locally Linear Factorization Machines (LLFM) which overcomes this limitation by exploring local coding technique. Unlike existing local coding classifiers that involve a phase of unsupervised anchor point learning and predefined local coding scheme which is suboptimal as the class label information is not exploited in discovering the encoding and thus can result in a suboptimal encoding for prediction, we formulate a joint optimization over the anchor points, local coding coordinates and FMs variables to minimize classification or regression risk. Empirically, we demonstrate that our approach achieves much better predictive accuracy than other competitive methods which employ LLFM with unsupervised anchor point learning and predefined local coding scheme.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convex Factorization Machine for Regression

We propose the convex factorization machine (CFM), which is a convex variant of the widely used Factorization Machines (FMs). Specifically, we employ a linear+quadratic model and regularize the linear term with the l2-regularizer and the quadratic term with the trace norm regularizer. Then, we formulate the CFM optimization as a semidefinite programming problem and propose an efficient optimiza...

متن کامل

$n$-factorization Property of Bilinear Mappings

In this paper, we define a new concept of factorization for a bounded bilinear mapping $f:Xtimes Yto Z$, depended on  a natural number $n$ and a cardinal number $kappa$; which is called $n$-factorization property of level $kappa$. Then we study the relation between $n$-factorization property of  level $kappa$ for $X^*$ with respect to $f$ and automatically boundedness and $w^*$-$w^*$-continuity...

متن کامل

WZ factorization via Abay-Broyden-Spedicato algorithms

Classes of‎ ‎Abaffy-Broyden-Spedicato (ABS) methods have been introduced for‎ ‎solving linear systems of equations‎. ‎The algorithms are powerful methods for developing matrix‎ ‎factorizations and many fundamental numerical linear algebra processes‎. ‎Here‎, ‎we show how to apply the ABS algorithms to devise algorithms to compute the WZ and ZW‎ ‎factorizations of a nonsingular matrix as well as...

متن کامل

Triple factorization of non-abelian groups by two maximal subgroups

The triple factorization of a group $G$ has been studied recently showing that $G=ABA$ for some proper subgroups $A$ and $B$ of $G$, the definition of rank-two geometry and rank-two coset geometry which is closely related to the triple factorization was defined and calculated for abelian groups. In this paper we study two infinite classes of non-abelian finite groups $D_{2n}$ and $PSL(2,2^{n})$...

متن کامل

On the WZ Factorization of the Real and Integer Matrices

The textit{QIF}  (Quadrant Interlocking Factorization) method of Evans and Hatzopoulos solves linear equation systems using textit{WZ}  factorization. The  WZ factorization can be faster than the textit{LU} factorization  because,  it performs the simultaneous evaluation of two columns or two rows. Here, we present a  method for computing the real and integer textit{WZ} and  textit{ZW} factoriz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017